skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solomon, Rance"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quasars (QSOs) are extremely luminous active galactic nuclei currently observed up to redshift z = 7.642. As such, they have the potential to be the next rung of the cosmic distance ladder beyond Type Ia supernovae, if they can reliably be used as cosmological probes. The main issue in adopting QSOs as standard candles (similarly to gamma-ray bursts) is the large intrinsic scatter in the relations between their observed properties. This could be overcome by finding correlations among their observables that are intrinsic to the physics of QSOs and not artifacts of selection biases and/or redshift evolution. The reliability of these correlations should be verified through well-established statistical tests. The correlation between the ultraviolet and X-ray fluxes developed by Risaliti & Lusso is one of the most promising relations. We apply a statistical method to correct this relation for redshift evolution and selection biases. Remarkably, we recover the the same parameters of the slope and the normalization as Risaliti & Lusso. Our results establish the reliability of this relation, which is intrinsic to the QSO properties and not merely an effect of selection biases or redshift evolution. Hence, the possibility to standardize QSOs as cosmological candles, thereby extending the Hubble diagram up to z = 7.54. 
    more » « less
  2. null (Ed.)